Alo! Giờ nào còn dùng phiên bản này nữa Cập nhật ngay

Tổng quan toàn bộ về pt logarit

Tác giả Minh Châu 17:21 09/03/2022 1,992 Tag Lớp 12

Khi ôn tập về pt logarit, các em học sinh cần có kế hoạch ôn tổng hợp, bắt đầu từ phần lý thuyết đơn giản đến áp dụng phương pháp làm bài vào các dạng khác nhau. Trong bài viết dưới đây, VUIHOC sẽ hướng dẫn các em tổng ôn toàn bộ về pt logarit và luyện tập các dạng bài tập pt logarit khác nhau nhé!

Tổng quan toàn bộ về pt logarit

Trước khi đi vào chi tiết bài viết, các thầy cô chuyên môn VUIHOC đã có nhận định chung về mức độ khó và phần kiến thức cần nắm khi ôn tập pt logarit tại bảng dưới đây:

Tổng quan về pt logarit

Để ôn tập dễ dàng và đạt hiệu quả hơn, các em tải file tổng hợp toàn bộ lý thuyết về pt logarit mà các thầy cô VUIHOC đã biên soạn riêng cho các em tại link dưới đây nhé!

Tải xuống file đầy đủ lý thuyết về pt logarit

1. Ôn tập lý thuyết về logarit

1.1. Định nghĩa về logarit và phân loại logarit

Với cơ số a dương và khác 1 thì phương trình có dạng như sau được gọi là phương trình logarit cơ bản: $log_ax=b$

Ta thấy vế trái của pt logarit là hàm đơn điệu có miền giá trị là $\mathbb{R}$. Vế phải pt logarit là một hàm hằng. Vì vậy phương trình logarit cơ bản luôn có nghiệm duy nhất. Theo định nghĩa của logarit ta dễ dàng suy ra nghiệm đó là: $x=a^b$

 

Với điều kiện $0<a\neq 1$, ta có các phương trình logarit cơ bản như sau:

Các loại phương trình logarit cơ bản

 

1.2. Bảng công thức pt logarit cơ bản

Một số công thức biến đổi logarit vận dụng để giải phương trình logarit chứa tham số được VUIHOC tổng hợp tại bảng sau đây, các em lưu ý nhé:

Các công thức biến đổi logarit

Đối với phương trình logarit, chúng ta cần lưu ý thêm các công thức dưới đây:

công thức thêm về pt logarit

2. 4 dạng bài tập phương trình logarit cơ bản

2.1. Phương pháp đưa về cùng cơ số

Một lưu ý nhỏ cho các em đó là trong quá trình biến đổi để tìm ra cách giải pt logarit, chúng ta thường quên việc kiểm soát miền xác định của phương trình. Vì vậy để cho an toàn thì ngoài phương trình logarit cơ bản, các bạn nên đặt điều kiện xác định cho phương trình trước khi biến đổi.

Phương pháp giải dạng toán này như sau:

  • Trường hợp 1: $y=log_af(x)=b$ => $f(x)=ab$
  • Trường hợp 2: $y=log_af(x)=y=log_ag(x)$ khi và chỉ khi $f(x)=g(x)$

 

Ta cùng xét ví dụ sau để rõ hơn về cách giải pt logarit bằng cách đưa về cùng cơ số:

Ví dụ giải pt logarit bằng cách đưa về cùng cơ số

2.2. Giải phương trình logarit bằng cách đặt ẩn phụ

Ở cách giải pt logarit này, khi đặt ẩn phụ, chúng ta cần chú ý xem miền giá trị của ẩn phụ để đặt điều kiện cho ẩn phụ hoặc không. Ta có công thức tổng quát như sau:

Phương trình dạng: $Q[log_ax]=0$ -> Đặt $t=log_ax$ ($x$ thuộc $\mathbb{R}$)

 

Các em cùng VUIHOC xét ví dụ sau đây:

Ví dụ giải pt logarit bằng cách đặt ẩn phụ

2.3. Mũ hoá giải pt logarit

Bản chất của việc giải phương trình logarit cơ bản (ở trên) cũng là mũ hóa 2 vế với cơ số a. Trong 1 số trường hợp, phương trình có cả loga có cả mũ thì ta có thể thử áp dụng mũ hóa 2 vế để giải.

Phương trình $log_af(x)=log_bg(x)$ $(a>0, a\neq 1)$

Ta đặt $log_af(x)=log_bg(x)=t$ => Hoặc $f(x)=a^$t hoặc $g(x)=a^t$

=> Đưa về dạng phương trình ẩn $t$.

Ví dụ giải pt logarit bằng pp mũ hoá

 

2.4. Cách giải phương trình logarit bằng đồ thị

Giải phương trình: $log_ax=f(x)$  $(0<a\neq 1)$ (Đây là phương trình hoành độ giao điểm của 2 đồ thị $y=log_ax$ $(0<a\neq 1)$ và $y=f(x)$. Khi đó ta thực hiện 2 bước:

  • Bước 1: Vẽ đồ thị các hàm số: $y=log_ax(0<a\neq 1)$ và $y=f(x)$

  • Bước 2: Kết luận nghiệm của phương trình đã cho là số giao điểm của đồ thị

Ta có ví dụ minh hoạ về phương pháp giải pt logarit này như sau:

Ví dụ giải pt logarit bằng đồ thị - đề bài

Ví dụ giải pt logarit bằng đồ thị - giải

 

3. Bài tập áp dụng - luyện tập pt logarit

Để không mất nhiều thời gian trong việc suy nghĩ và nhận dạng bài toán về pt logarit, các em tải file tổng hợp bài tập pt logarit đầy đủ kèm giải chi tiết về luyện tập hằng ngày nhé. Trong file bài tập này, các thầy cô VUIHOC đã biên soạn và tổng hợp đầy đủ các dạng bài tập thường xuất hiện trong các đề thi THPTQG. Đừng bỏ qua nhé!

Tải xuống file bài tập pt logarit đầy đủ có đáp án

 

Ngoài ra, để học cách giải các bài tập pt logarit bằng máy tính CASIO, các em cùng theo dõi livestream của thầy Thành Đức Trung để học theo các tips bấm máy cực hay và nhanh của thầy nhé!

 

Bài viết đã tổng hợp toàn bộ lý thuyết và các dạng bài tập phổ biến trong phần kiến thức về pt logarit. VUIHOC chúc các em học tốt!

Toán 12 | Ôn thi THPTQG môn Toán

180 clip bài giảng theo từng chủ đề, hơn 6700 bài tập bám sát chương trình ôn thi THPT QG, 20 đề ôn tập có video chữa cụ thể, 30 đề tự luyện, cùng với khóa livestream. Giúp học sinh nắm vững kiến thức, tâm thế vững vàng trước kì thi.

1.500.000
Chỉ còn 900.000
Chỉ còn 2 ngày
| đánh giá
Bình luận
  • {{comment.create_date | formatDate}}
Toán 12 | Ôn thi THPTQG môn Toán

1.500.000

Chỉ còn 900.000

Chỉ còn nốt 2 ngày

ĐĂNG KÝ HỌC

Mục tiêu khóa học

  • - HIỂU SÂU 100% kiến thức Toán 12, một phần kiến thức Toán 11 có trong kì thi THPT QG. 
  • - Biết cách giải thông thường và một số cách giải nhanh theo phương thức trắc nghiệm.
  • - Cải thiện tư duy Toán học thông qua hệ thống các dạng bài tập vận dụng và vận dụng cao.
  • - Xâu chuỗi các kiến thức Toán cấp THPT để giúp học sinh hiểu sâu hơn, khả năng tự tìm được phương án giải trong mọi dạng Toán lần đầu gặp.
  • - Rèn luyện kỹ năng làm Toán với hệ thống bài tập ôn tập, luyện tập phân rõ các mức độ nhận thức.
  • - Đạt điểm 8+, 9+, 10 trong kì thi THPT QG 2021.

Thời gian học

  • - 12 tháng kể từ ngày kích hoạt 

Cấu trúc khóa học

  • - 180 clip bài giảng quay sẵn chất lượng cao
  • - Hơn 6700 câu hỏi luyện tập
  • - 20 đề ôn tập có video chữa chi tiết
  • - 30 đề tự luyện có lời giải chi tiết
  • - Các buổi livestream tổng ôn, chữa đề thi thử các tỉnh và thành phố, ...

Hỗ trợ

  • - Luôn có thầy cô trợ giảng trợ giúp trong nhóm facebook.
  • - Giải đáp thắc mắc liên quan dưới mỗi câu hỏi trên web.