Công Thức Tính Nhanh Cực Trị Hàm Trùng Phương Và Bài Tập Vận Dụng
Cực trị hàm trùng phương là dạng toán thường hay xuất hiện trong các đề thi THPT Quốc gia. Để giúp các em học sinh giải được các bài tập thuộc dạng này, Vuihoc sẽ mang đến bài viết tổng hợp các công thức và bài tập vận dụng cực trị hàm trùng phương có lời giải chi tiết.
1. Hàm trùng phương là gì?
Hàm trùng phương là một trong những hàm số mà học sinh rất thường gặp. Hàm trùng phương là dạng đặc biệt của hàm số bậc 4, thường được quy về hàm số bậc 2 để giải phương trình.
Hàm số trùng phương là hàm có dạng như sau:
(với )
Để tìm được cực trị hàm bậc 4 trùng phương, ta sẽ quy về phương trình bậc 2 để giải phương trình tìm cực trị.
2. Điều kiện hàm trùng phương có 3 cực trị, 1 cực trị
Để hàm trùng phương có 3 cực trị và 1 cực trị, ta sẽ có các điều kiện như sau:
Cho hàm số: (với )
suy ra:
3. Công thức giải nhanh cực trị của hàm số trùng phương
Để có thể áp dụng công thức và giải nhanh bài tập cực trị hàm trùng phương, các em cần nắm rõ các tính chất sau đây:
3.1. Tính chất 1: 3 điểm cực trị tạo thành một tam giác vuông cân
Cho hàm số (với ) có đồ thị (C)
suy ra:
Đồ thị (C) có 3 điểm cực trị nên y’=0 có 3 nghiệm phân biệt
Để 3 điểm cực trị tạo thành tam giác vuông cân ta có công thức tính nhanh:
Đăng ký ngay để nhận tài liệu nắm trọn kiến thức và phương pháp giải mọi dạng bài tập Toán THPT với bộ bí kíp độc quyền của VUIHOC ngay
3.2. Tính chất 2: 3 điểm cực trị tạo thành một tam giác đều
Cho hàm số:
(với ) có đồ thị ©
y = 0 suy ra:
Để 3 điểm cực trị tạo thành một tam giác đều, ta có công thức tính nhanh là:
4. Một số bài tập về cực trị hàm trùng phương
Các bạn học sinh đã được biết về điều kiện để hàm trùng phương có 3 cực trị, 1 cực trị và công thức cực trị hàm trùng phương. Dưới đây là một số bài tập vận dụng dạng toán này giúp các em hiểu bài hơn.
Bài 1: Tìm giá trị tham số m để ĐTHS (với m là tham số thực) có ba điểm cực trị tạo thành ba đỉnh của tam giác vuông.
Giải:
x = 0 hoặc x2 = (m + 1)
Hàm số có 3 cực trị
Lúc này đồ thị có 3 điểm cực trị:
Có: B và C đối xứng nhau qua Oy, A ∈ Oy nên ∆ABC cân tại A nghĩa là AB = AC nên tam giác chỉ vuông cân tại A.
Theo định lý Pitago ta có:
(do m > -1)
Bài 2: Cho , (m là tham số thực). Hãy xác định các giá trị của m để hàm số có 3 cực trị và các giá trị của hàm số tạo thành một tam giác có bán kính đường tròn ngoại tiếp là 1.
Giải:Đạo hàm
Hàm số có 3 điểm cực trị
Có: phương trình y' = 0 có ba nghiệm phân biệt và y' đổi dấu khi x đi qua nghiệm đó m > 0
Khi đó 3 điểm cực trị của ĐTHS là:
Bán kính đường tròn ngoại tiếp:
Bài 3: Cho hàm số (m là tham số thực). Tìm m để hàm số có diện tích tam giác ABC bằng 64 và có 3 cực trị A,B,C.
Giải:
Để hàm số có 3 cực trị là y' = 0 và có ba nghiệm phân biệt
Phương trình có 2 nghiệm phân biệt
Ta có 3 điểm cực trị là:
Ta thấy suy ra tam giác ABC cân tại A.
I là trung điểm của BC thì nên ; BC = 4|m|
(thỏa mãn ).
Vậy là giá trị cần tìm.
Bài 4: Cho hàm số . Tìm m để hàm số có cực tiểu, cực đại và điểm cực trị của đồ thị hàm số lập được thành tam giác có diện tích S lớn nhất.
Giải:
Ta có
Để hàm số có cực đại, cực tiểu chỉ khi |m| < 1
Tọa độ điểm cực trị:
Ta có
Vậy m = 0 là giá trị cần tìm.
Bài 5: Cho hàm số . Tìm m để hàm số có 3 điểm cực trị và ba điểm cực trị đó lập thành một tam giác có một góc bằng
Giải:
Ta có
Gọi là các điểm cực trị
. cân tại A nên góc chính là A.
hoặc m = 0 (loại)
Vậy là giá trị cần tìm.
PAS VUIHOC – GIẢI PHÁP ÔN LUYỆN CÁ NHÂN HÓA
Khóa học online ĐẦU TIÊN VÀ DUY NHẤT:
⭐ Xây dựng lộ trình học từ mất gốc đến 27+
⭐ Chọn thầy cô, lớp, môn học theo sở thích
⭐ Tương tác trực tiếp hai chiều cùng thầy cô
⭐ Học đi học lại đến khi nào hiểu bài thì thôi
⭐ Rèn tips tricks giúp tăng tốc thời gian làm đề
⭐ Tặng full bộ tài liệu độc quyền trong quá trình học tập
Đăng ký học thử miễn phí ngay!!
Sau bài viết, hy vọng các em học sinh đã nắm chắc được toàn bộ lý thuyết và bài tập áp dụng về cực trị hàm trùng phương thuộc chương trình Toán 11. Để có thêm nhiều bài giảng hay, các em có thể truy cập nền tảng học online Vuihoc.vn để đăng ký tài khoản để có được kiến thức tốt nhất nhé!