Alo! Giờ nào còn dùng phiên bản này nữa Cập nhật ngay

Đạo hàm logarit - đầy đủ lý thuyết và bài tập siêu chi tiết

Tác giả Minh Châu 16:35 18/03/2022 3,086 Tag Lớp 12

Để giải tốt bài tập đạo hàm logarit này, các em cần nắm vững từ lý thuyết, công thức tính đạo hàm logarit, các tính chất đến những dạng bài tập thường gặp. Cùng VUIHOC ôn tập từ A đến Z về đạo hàm hàm số logarit nhé!

Đạo hàm logarit - đầy đủ lý thuyết và bài tập siêu chi tiết

Trước khi đi vào chi tiết, chúng ta hãy cùng tổng hợp lại những gì chung nhất của hàm số logarit và dạng bài tập đạo hàm logarit tại bảng sau nhé!

Để tiện hơn trong việc theo dõi bài viết cũng như ôn luyện về sau, thầy cô VUIHOC tặng riêng cho em bộ tài liệu lý thuyết về đạo hàm logarit cực chi tiết. Các em nhớ tải về để học nhé!

Tải xuống file lý thuyết hàm logarit và đạo hàm logarit cực chi tiết

 

1. Ôn tập lý thuyết về hàm số logarit

1.1. Lý thuyết về đạo hàm

Để áp dụng vào đạo hàm hàm số logarit, các em cần nắm vững các kiến thức cơ bản về đạo hàm để làm được các bài tập tính đạo hàm của hàm số logarit.

1.1.1. Định nghĩa và ý nghĩa của đạo hàm

  • Định nghĩa: Giới hạn, nếu có, của tỉ số giữa số gia của hàm số và số gia của đối số tại \large x_{0} khi số gia của đối số tiến dần tới 0, được gọi là đạo hàm của hàm số $y=f(x)$ tại điểm \large x_{0}

  • Đạo hàm của hàm số $y=f(x)$ được ký hiệu là y'(\large x_{0}) hoặc f'(\large x_{0}).

Hoặc

Lưu ý:

  • Số gia của đối số là \large x=x-x_{0}

  • Số gia của hàm số là \large y=y-y_{0}

  • Giá trị đạo hàm tại 1 điểm \large x_{0} thể hiện chiều biến thiên của hàm số và độ lớn của biến thiên này.

1.1.2. Một số quy tắc đạo hàm áp dụng trong công thức tính đạo hàm hàm số logarit

  • Đạo hàm của một số hàm số thường gặp:

    • Định lý 1: Hàm số \large y=x^{n} (n\in \mathbb{N}, n>1) có đạo hàm với mọi \large x\in \mathbb{R}\large (x^{n})'=n.x^{n-1}

    • Định lý 2: Hàm số \large y=\sqrt{x} có đạo hàm với mọi x dương và

\large (\sqrt{x})'=\frac{1}{2\sqrt{x}}

  • Đạo hàm của tổng, hiệu, tích, thương:

    • Định lý 3: Giả sử $u=u(x)$, $v=v(x)$ là các hàm số có đạo hàm tại điểm $x$ thuộc khoảng xác định, ta có:

  • Hệ quả 1: Nếu k là một hằng số thì $(ku)’=ku’$

  • Hệ quả 2:

\large (\frac{1}{v})=-\frac{v'}{v^{2}} (v=v(x)\neq 0)

  • Đạo hàm của hàm hợp: (định lý 4) Nếu hàm số $u=g(x)$ có đạo hàm tại $x$ là \large u'_{x} và hàm số $y=f(u)$ có đạo hàm tại $u$ là \large y'_{u} thì hàm hợp $y=f(g(x))$ có đạo hàm (theo $x$) là \large y'_{x}=y'_{u}.u'_{x}. Ta có bảng sau:

1.2. Lý thuyết về hàm số logarit

Trước khi đi cụ thể vào các bài tập tính đạo hàm hàm số logarit, các em cần nắm chắc lý thuyết tổng quan về định nghĩa, tập xác định, đồ thị,... của hàm số logarit. Các em lưu ý dạng hàm số và các tính chất để tránh những sai lầm đáng tiếc khi làm bài tập nhé!

1.2.1 Định nghĩa và tập xác định

Định nghĩa hàm logarit là nền tảng để xây dựng công thức tính đạo hàm logarit. Theo chương trình Đại số THPT các em đã được học, hàm logarit có định nghĩa như sau:

Cho số thực $a>0$, \large a\neq 1, hàm số \large y=log_{a}x được gọi là hàm số logarit cơ số $a$ của $x$. 

Hàm số \large y=log_{a}x \large (0<a\neq 1) có tập xác định \large D=(0;+\infty )

Do  \large log_{a}x\in \mathbb{R} nên hàm số  \large y=log_{a}x có tập giá trị là \large T=\mathbb{R}.

 

Xét trường hợp hàm số \large y=log_{a}[P(x)] điều kiện $P(x)>0$. Nếu a chứa biến x thì ta bổ sung điều kiện 0<a1

 

Xét trường hợp đặc biệt: \large y=log_{a}[P(x)]^{n} điều kiện $P(x)>0$ nếu n lẻ; \large P(x)\neq 0 nếu n chẵn.

 

1.2.2. Đồ thị hàm logarit

  • Đồ thị hàm số có tiệm cận đứng là trục $Oy$ và luôn đi qua các điểm $(1;0)$ và $(a;1)$ và nằm phía bên phải trục tung.
  • Đồ thị nhận trục tung là tiệm cận đứng.

Ta rút ra được nhận xét sau: Đồ thị hàm số \large y=a^{x}\large y=log_{a}x \large (0<a\neq 1) đối xứng nhau qua đường thẳng $y=x$ (góc phần tư thứ nhất và thứ 3 trong hệ trục toạ độ $Oxy$).

 

2. Đầy đủ lý thuyết về đạo hàm logarit

Để làm được những bài tập tính đạo hàm của hàm số logarit, chúng ta cần nắm vững lý thuyết về đạo hàm logarit, đặc biệt là các công thức tính đạo hàm logarit.

2.1. Định nghĩa đạo hàm hàm logarit

Cho hàm số \large y=log_{a}x. Khi đó đạo hàm hàm logarit trên là:

cong-thuc-dao-ham-logarit

Trường hợp tổng quát hơn, cho hàm số \large y=log_{a}u(x). Đạo hàm hàm số logarit là:

cong-thuc-dao-ham-logarit-1

 

2.2. Các tính chất áp dụng trong bài tập đạo hàm logarit

Với hàm số  y=log_{a}x\Rightarrow y'=\frac{1}{xlna} (\forall x\in (0;+\infty )). Do đó:

  • Với $a>1$ ta có (log_{a}x)'=\frac{1}{xlna}>0\Rightarrow Hàm số luôn đồng biến trên khoảng (\forall x\in (0;+\infty )).Trong trường hợp này ta có: \lim_{x\rightarrow 0^{+}}y=-\infty do đó đồ thị nhận trục tung là tiệm cận đứng.

  • Với $0<a<1$ta có: (log_{a}x)'=\frac{1}{xlna}<0\Rightarrow Hàm số luôn nghịch biến trên khoảng (0;+). Trong trường hợp này ta có: \lim_{x\rightarrow 0^{+}}y=+\infty do đó đồ thị hàm số nhận trục tung là tiệm cận đứng.

 

2.3. Công thức tính đạo hàm logarit

Để giúp các em thuận lợi hơn trong việc ôn tập cũng như giải các bài toán đạo hàm hàm số logarit, VUIHOC đã tổng hợp bảng công thức tính đạo hàm hàm logarit cơ bản trong chương trình THPT:

 

2.4. Các dạng bài tập áp dụng công thức tính đạo hàm hàm logarit

Dưới đây là một số dạng bài tập tính đạo hàm của hàm số logarit điển hình mà các em hay gặp trong quá trình học, cùng VUIHOC xét những ví dụ minh hoạ sau:

 

3. Bài tập áp dụng

Dưới đây là một số các bài tập tính đạo hàm hàm số logarit cực sát các đề thi mà thầy cô VUIHOC đã tổng hợp và chọn lọc cho các em luyện tập. Nhớ tải về để làm nhé!

Tải về file bài tập đạo hàm logarit chi tiết và cực sát đề thi

 

Trên đây là toàn bộ lý thuyết, công thức đi kèm với bài tập chi tiết về đạo hàm logarit. Chúc các em học tốt và chinh phục mọi bài tập logarit “khó nhằn” nhé!

>> Xem thêm: Đạo hàm của hàm số lượng giác

Toán 12 | Ôn thi THPTQG môn Toán

180 clip bài giảng theo từng chủ đề, hơn 6700 bài tập bám sát chương trình ôn thi THPT QG, 20 đề ôn tập có video chữa cụ thể, 30 đề tự luyện, cùng với khóa livestream. Giúp học sinh nắm vững kiến thức, tâm thế vững vàng trước kì thi.

1.500.000
Chỉ còn 900.000
Chỉ còn 2 ngày
| đánh giá
Bình luận
  • {{comment.create_date | formatDate}}
Toán 12 | Ôn thi THPTQG môn Toán

1.500.000

Chỉ còn 900.000

Chỉ còn nốt 2 ngày

ĐĂNG KÝ HỌC

Mục tiêu khóa học

  • - HIỂU SÂU 100% kiến thức Toán 12, một phần kiến thức Toán 11 có trong kì thi THPT QG. 
  • - Biết cách giải thông thường và một số cách giải nhanh theo phương thức trắc nghiệm.
  • - Cải thiện tư duy Toán học thông qua hệ thống các dạng bài tập vận dụng và vận dụng cao.
  • - Xâu chuỗi các kiến thức Toán cấp THPT để giúp học sinh hiểu sâu hơn, khả năng tự tìm được phương án giải trong mọi dạng Toán lần đầu gặp.
  • - Rèn luyện kỹ năng làm Toán với hệ thống bài tập ôn tập, luyện tập phân rõ các mức độ nhận thức.
  • - Đạt điểm 8+, 9+, 10 trong kì thi THPT QG 2021.

Thời gian học

  • - 12 tháng kể từ ngày kích hoạt 

Cấu trúc khóa học

  • - 180 clip bài giảng quay sẵn chất lượng cao
  • - Hơn 6700 câu hỏi luyện tập
  • - 20 đề ôn tập có video chữa chi tiết
  • - 30 đề tự luyện có lời giải chi tiết
  • - Các buổi livestream tổng ôn, chữa đề thi thử các tỉnh và thành phố, ...

Hỗ trợ

  • - Luôn có thầy cô trợ giảng trợ giúp trong nhóm facebook.
  • - Giải đáp thắc mắc liên quan dưới mỗi câu hỏi trên web.