Alo! Giờ nào còn dùng phiên bản này nữa Cập nhật ngay

Lũy Thừa Của Lũy Thừa Là Gì? Định Nghĩa Và Công Thức Chuẩn

Tác giả Minh Châu 10:26 18/03/2022 3,369 Tag Lớp 12

Luỹ thừa của luỹ thừa là một dạng đặc biệt trong phần kiến thức luỹ thừa lớp 12. Có công thức phức tạp hơn, cách biến đổi cần nhiều bước và sáng tạo hơn luỹ thừa dạng cơ bản, tuy nhiên nếu nắm được phương pháp giải thì các bài toán dạng này không hề khó giải.

Lũy Thừa Của Lũy Thừa Là Gì? Định Nghĩa Và Công Thức Chuẩn

Đầu tiên, các em cùng VUIHOC nhận định mức độ khó của các bài toán luỹ thừa của luỹ thừa tại bảng sau đây:

Tổng quan về luỹ thừa của luỹ thừa

 

Để dễ dàng hơn trong việc theo dõi bài viết cũng như ôn tập sau này, các em tải file tổng hợp lý thuyết luỹ thừa - luỹ thừa của luỹ thừa theo link dưới đây nhé!

Tải xuống file lý thuyết luỹ thừa của luỹ thừa đầy đủ và chi tiết

 

1. Ôn lại lý thuyết về luỹ thừa

1.1. Định nghĩa

Về định nghĩa luỹ thừa, các em có thể hiểu đơn giản rằng, lũy thừa là một phép toán hai ngôi của toán học thực hiện trên hai số a và b, kết quả của phép toán lũy thừa là tích số của phép nhân có $n$ thừa số $a$ nhân với nhau. Lũy thừa có thể hiểu là tích số của một số với chính nó nhiều lần. 

Luỹ thừa ký hiệu là $a^b$, đọc là lũy thừa bậc $b$ của $a$ hay $a$ mũ $b$, số $a$ gọi là cơ số, số $b$ gọi là số mũ.

Ngoài ra, ta cần biết rằng, phép toán ngược với phép tính lũy thừa là phép khai căn.

 

1.2. Phân loại luỹ thừa

Như chương trình THPT đã được học về luỹ thừa nói chung và luỹ thừa của một luỹ thừa nói riêng, các em có thể biết được luỹ thừa được phân chia ra làm 3 dạng: luỹ thừa với số mũ nguyên, luỹ thừa với số mũ hữu tỉ và luỹ thừa với số mũ thực. Mỗi dạng sẽ có công thức tổng quát hoặc tính chất riêng biệt mà các em cần lưu ý phân biệt để không nhầm lẫn trong quá trình giải bài tập.

Dạng 1: Luỹ thừa với số mũ nguyên

Cho $n$ là một số nguyên dương. Với $a$ là một số thực tuỳ ý, luỹ thừa bậc $n$ của $a$ là tích của n thừa số $a$. Định nghĩa luỹ thừa với số mũ nguyên cũng giống định nghĩa chung về luỹ thừa. Ta có công thức tổng quát như sau:

$a^n=a.a.a.a…..a$ ($n$ thừa số $a$)

Với $a^0$ thì $a^0=1, a^{-n}=\frac{1}{a^n}$

Lưu ý:

  • $0^n$ và $0^{-n}$ không có nghĩa

  • Luỹ thừa với số mũ nguyên có các tính chất tương tự của luỹ thừa với số mũ nguyên dương.

 

Dạng 2: Luỹ thừa với số mũ hữu tỉ

Cho số thực $a$ dương và số hữu tỉ $r=m^n$, trong đó $m\in \mathbb{Z}, n\in \mathbb{N}, n\geq 2$

Luỹ thừa của số $a$ với số mũ $r$ là số $a^r$ xác định bởi: $a^r=a^{\frac{m}{n}}=\sqrt[n]{a^m}$

Đặc biệt: Khi $m=1: a^{\frac{1}{n}}=\sqrt[n]{a}$

Ví dụ:

 Ví dụ về luỹ thừa với số mũ hữu tỉ

 

Dạng 3: Luỹ thừa với số mũ thực

Cho $a>0,a\in \mathbb{R}$, là một số vô tỉ, khi đó $a^\alpha =\lim_{n\rightarrow +\infty }a(r^n)$ với $r^n$ là dãy số hữu tỉ thoả mãn $\lim_{n\rightarrow +\infty }r^n=\alpha $

Tính chất của luỹ thừa với số mũ thực:

Tính chất của luỹ thừa với số mũ thực

1.3. Tính chất và công thức luỹ thừa cơ bản

Các tính chất của luỹ thừa góp phần không nhỏ trong việc hình thành cách so sánh luỹ thừa trong các bài tập cụ thể. Chúng ta cùng xét các tính chất lũy thừa áp dụng để biến đổi và so sánh luỹ thừa sau:

  • Tính chất về đẳng thức: Cho a ≠ 0; b ≠ 0; m, n ∈ R, ta có:

Tính chất về đẳng thức áp dụng so sánh luỹ thừa

Tính chất về bất đẳng thức: 

  • So sánh cùng cơ số: Cho m, n ∈ R. Khi đó:
    • Với $a>1$ thì $a^m>a^n\Rightarrow m>n$
    • Với $0<a<1$ thì $a^m>a^n\Rightarrow m<n$
  • So sánh cùng số mũ:
    • Với số mũ dương $n>0: a>b>0\Rightarrow a^n>b^n$
    • Với số mũ âm $n<0: a>b>0\Rightarrow a^n<b^n$

 

Dưới đây là bảng công thức luỹ thừa cơ bản giúp các em biến đổi các phép tính luỹ thừa của luỹ thừa:

 

Ngoài ra còn có một số công thức khác trong các trường hợp đặc biệt, cụ thể như sau:

  • Luỹ thừa của số e:

Số $e$ là hằng số toán học quan trọng, xấp xỉ 2.718 và là cơ số của logarit tự nhiên. Số $e$ được định nghĩa qua giới hạn sau:

Hàm $e$ mũ, được định nghĩa bởi $e=\lim_{x\rightarrow \infty }(1+\frac{1}{n})^n$ ở đây $x$ được viết như số mũ vì nó thỏa mãn đẳng thức cơ bản của lũy thừa $e^{x+y}=e^x.e^y$ 

Hàm $e$ mũ xác định với tất cả các giá trị nguyên, hữu tỷ, thực và cả giá trị phức của $x$.

Có thể chứng minh ngắn gọn rằng hàm $e$ mũ với $x$ là số nguyên dương k chính là $e^k$ như sau:

Công thức chứng minh luỹ thừa của số e

Chứng minh này cũng chứng tỏ rằng $e^{x+y}$ thỏa mãn đẳng thức lũy thừa khi x và y là các số nguyên dương. Kết quả này cũng có thể mở rộng cho tất cả các số không phải là số nguyên dương.

 

  • Hàm luỹ thừa với số mũ thực:

Lũy thừa với số mũ thực cũng thường được định nghĩa bằng cách sử dụng logarit thay cho sử dụng giới hạn của các số hữu tỷ.

Logarit tự nhiên $ln(x)$ là hàm ngược của hàm $e^x$. Theo đó $lnx$ là số $b$ sao cho $x=e^b$

 

Nếu $a$ là số thực dương, $x$ là số thực bất kỳ ta có $a=elna$ nên nếu ax được định nghĩa nhờ hàm logarit tự nhiên thì ta cần phải có:

$a^x=(e^{lna})^x=e^{x.lna}$

Điều này dẫn tới định nghĩa $a^x=e^{x.lna}$ với mọi số thực $x$ và số thực dương $a$

 

2. Luỹ thừa của luỹ thừa

2.1. Luỹ thừa của một luỹ thừa là gì?

Để hiểu được luỹ thừa của luỹ thừa là gì,đơn giản nhất ta có thể suy ra từ định nghĩa của luỹ thừa như sau: 

Luỹ thừa của luỹ thừa là biểu thức luỹ thừa trong đó phần cơ số là một biểu thức luỹ thừa khác. Luỹ thừa của luỹ thừa có ký hiệu là $(a^n)^m$

 

2.2. Công thức luỹ thừa của luỹ thừa

Theo định nghĩa trên, công thức luỹ thừa của luỹ thừa có dạng như sau:

$(a^m)^n=a^{m.n}$

 

2.3. Ứng dụng công thức luỹ thừa của luỹ thừa trong các bài toán luỹ thừa

VD1:

Ví dụ bài toán luỹ thừa của luỹ thừa

Lời giải

Chọn A

Ta có 

Ví dụ bài toán luỹ thừa của luỹ thừa

 

VD2.

Ví dụ bài toán luỹ thừa của luỹ thừa

Lời giải

 

Ví dụ bài toán luỹ thừa của luỹ thừa

 

3. Bài tập luỹ thừa của luỹ thừa áp dụng

Để thành thạo các bài tập luỹ thừa của luỹ thừa, VUIHOC gửi tặng các em bộ tài liệu tổng hợp các dạng bài áp dụng công thức biến đổi luỹ thừa của một luỹ thừa thường gặp nhất. Các em tải theo link dưới đây nhé!

Tải xuống file bài tập luỹ thừa của luỹ thừa có giải chi tiết

 

Trên đây là toàn bộ kiến thức cần ghi nhớ về luỹ thừa của luỹ thừa. Chúc các em luôn học tốt nhé!

Toán 12 | Ôn thi THPTQG môn Toán

180 clip bài giảng theo từng chủ đề, hơn 6700 bài tập bám sát chương trình ôn thi THPT QG, 20 đề ôn tập có video chữa cụ thể, 30 đề tự luyện, cùng với khóa livestream. Giúp học sinh nắm vững kiến thức, tâm thế vững vàng trước kì thi.

1.500.000
Chỉ còn 900.000
Chỉ còn 2 ngày
| đánh giá
Bình luận
  • {{comment.create_date | formatDate}}
Toán 12 | Ôn thi THPTQG môn Toán

1.500.000

Chỉ còn 900.000

Chỉ còn nốt 2 ngày

ĐĂNG KÝ HỌC

Mục tiêu khóa học

  • - HIỂU SÂU 100% kiến thức Toán 12, một phần kiến thức Toán 11 có trong kì thi THPT QG. 
  • - Biết cách giải thông thường và một số cách giải nhanh theo phương thức trắc nghiệm.
  • - Cải thiện tư duy Toán học thông qua hệ thống các dạng bài tập vận dụng và vận dụng cao.
  • - Xâu chuỗi các kiến thức Toán cấp THPT để giúp học sinh hiểu sâu hơn, khả năng tự tìm được phương án giải trong mọi dạng Toán lần đầu gặp.
  • - Rèn luyện kỹ năng làm Toán với hệ thống bài tập ôn tập, luyện tập phân rõ các mức độ nhận thức.
  • - Đạt điểm 8+, 9+, 10 trong kì thi THPT QG 2021.

Thời gian học

  • - 12 tháng kể từ ngày kích hoạt 

Cấu trúc khóa học

  • - 180 clip bài giảng quay sẵn chất lượng cao
  • - Hơn 6700 câu hỏi luyện tập
  • - 20 đề ôn tập có video chữa chi tiết
  • - 30 đề tự luyện có lời giải chi tiết
  • - Các buổi livestream tổng ôn, chữa đề thi thử các tỉnh và thành phố, ...

Hỗ trợ

  • - Luôn có thầy cô trợ giảng trợ giúp trong nhóm facebook.
  • - Giải đáp thắc mắc liên quan dưới mỗi câu hỏi trên web.