Tiệm Cận Ngang Là Gì? Cách Tìm Tiệm Cận Ngang Của Đồ Thị Hàm Số Và Bài Tập
Trong chương trình toán học THPT, các bạn học sinh sẽ thường xuyên gặp bài toán về tiệm cận ngang. Đây không phải là bài toán khó nhưng cũng đòi hỏi các bạn cần nắm chắc kiến thức để vận dụng vào bài một cách tốt nhất. Bài viết sẽ tổng hợp đầy đủ lý thuyết về tiệm cận ngang cũng như cách tìm tiệm cận ngang của đồ thị hàm số và bài tập.
1. Tiệm cận ngang là gì?
Tiệm cận ngang của một đồ thị hàm số y = f(x) xác định trên (a, +∞) là:
Nếu $\lim_{x\rightarrow +\infty }y=b$ thì y = b là đường tιệm cận ngang của đồ thị hàm số y = f(x).
Nếu $\lim_{x\rightarrow -\infty }y=b$ thì y = b là đường tιệm cận ngang của đồ thị hàm số y = f(x) xác định trên ($a,-\infty $).
Vậy hàm số sẽ có tối đa 2 đường tiệm cận ngang và tối thiểu không có đường tιệm cận ngang nào?
2. Cách tìm tiệm cận ngang của một đồ thị hàm số
Để tìm tiệm cận ngang của đồ thị hàm số y = f(x), ta làm theo các bước sau:
-
Bước 1. Ta sẽ đi tìm tập xác định của hàm số.
-
Bước 2. Tiếp theo tính giới hạn của hàm số đó tại vô cực. Từ đó chúng ta xác định được đường tιệm cận ngang.
Đồ thị hàm số y = f(x) có tập xác định là D.
Nếu $\lim_{x\rightarrow -\infty }=f(x)=y_{0}$ và $\lim_{x\rightarrow +\infty }f(x)=y_{0}$ thì đường thẳng $y=y_{0}$ là đường tiệm cận ngang của đồ thị hàm số.
Ví dụ: Cho hàm số y = $\frac{x+1}{x^{2}+1}$, hãy tìm tiệm cận ngang của đồ thị hàm số đó.
Giải:
Tập xác định hàm số: D = R
Ta có: $\lim_{x\rightarrow -\infty }y=0,\lim_{x\rightarrow +\infty }y=0$
Vậy đồ thị hàm số có một tiệm cận ngang là y = 0.
Đăng ký ngay để được các thầy cô tổng hợp trọn bộ kiến thức hình học không gian
3. Công thức tính tiệm cận ngang
3.1. Tiệm cận ngang của hàm phân thức hữu tỉ
Để tìm tiệm cận ngang của một hàm phân thức hữu tỉ, ta có công thức như bảng sau:
3.2. Tiệm cận ngang của hàm phân thức vô tỷ
Ta có công thức tính tiệm cận ngang của hàm phân thức vô tỉ là:
4. Cách tính đường tiệm cận ngang bằng máy tính
4.1. Hướng dẫn giải
Để tìm được đường tiệm cận ngang bằng máy tính, ta sẽ tính gần đúng giá trị của $\lim_{x\rightarrow +\infty }y,\lim_{x\rightarrow -\infty }y$
Để tính $\lim_{x\rightarrow -\infty }y$ thì ta tính giá trị của hàm số tại một giá trị x rất nhỏ. Ta thường lấy $x=-10^{9}$. Kết quả sẽ là giá trị gần đúng của $\lim_{x\rightarrow -\infty }y$.
Để tính $\lim_{x\rightarrow +\infty }y$ thì ta tính giá trị của hàm số tại một giá trị x rất lớn. Ta thường lấy $x=10^{9}$. Kết quả sẽ là giá trị gần đúng của $\lim_{x\rightarrow +\infty }y$.
Để tính giá trị hàm số tại giá trị của x, ta dùng CALC trên máy tính.
4.2. Ví dụ minh họa
Đường tiệm cận ngang của đồ thị hàm số y = $\frac{1-x}{3x+1}$ là?
Giải:
Tìm TXĐ: x ∈ R∖{−1/3}
Nhập hàm số vào máy tính Casio.
Ta bấm phím CALC rồi nhập giá trị $x=10^{9}$ rồi bấm dấu “=”. Ta được kết quả như sau:
Kết quả xấp xỉ bằng −1/3. Vậy ta có $\lim_{x\rightarrow +\infty }\rightarrow +\infty =\frac{-1}{3}$
Tương tự ta cũng có $\lim_{x\rightarrow -\infty }\rightarrow -\infty =\frac{-1}{3}$
Kết luận: Hàm số có 1 tiệm cận ngang là đường thẳng y =$\frac{-1}{3}$
5. Cách xác định tiệm cận ngang qua bảng biến thiên
Phương pháp giải bài toán tìm đường tiệm cận trên bảng biến thiên được thực hiện theo các bước:
Bước 1: Dựa vào bảng biến thiên để tìm tập xác định của hàm số.
Bước 2: Quan sát bảng biến thiên, suy ra giới hạn khi x đến biên của miền xác định $\lim_{x\rightarrow -\infty }f(x), \lim_{x\rightarrow +\infty }f(x),\lim_{x\rightarrow x_{0}+}f(x),\lim_{x\rightarrow x_{0}-}f(x)$
Bước 3: Kết luận
Đăng ký ngay để nhận bộ tài liệu tổng hợp trọn kiến thức và phương pháp giải mọi dạng bài tập Toán THPT Quốc Gia
6. Một số bài tập tìm đường tiệm cận ngang của đồ thị hàm số
Bài 1: Cho đồ thị hàm số y = $\frac{x+\sqrt{4x^{2}-3}}{2x+3}$, tìm đường tiệm cận ngang của hàm số.
Giải:
$\lim_{x\rightarrow -\infty }y=\frac{x+\sqrt{4x^{2}-3}}{2x+3}=\frac{-1}{2}$
$\lim_{x\rightarrow +\infty }y=\frac{x+\sqrt{4x^{2}-3}}{2x+3}=\frac{3}{2}$
Kết luận: y = 3/2 và y = -½ là tiệm cận ngang của đồ thị hàm số.
Bài 2: Tiệm cận ngang của đồ thị hàm số đã cho y = $\frac{x-1}{\sqrt{x^{2}-3x+2}}$ là bao nhiêu?
Giải:
$\lim_{x\rightarrow -\infty }y=\frac{1-\frac{1}{x}}{\sqrt{1-\frac{3}{x}+\frac{2}{x^{2}}}}=-1$
$\lim_{x\rightarrow +\infty }y=\frac{1-\frac{1}{x}}{\sqrt{1-\frac{3}{x}+\frac{2}{x^{2}}}}=1$
Kết luận: y = 1 và y = -1 là đường tiệm cận ngang của đồ thị hàm số.
Bài 3: Tìm giá trị tham số m để đồ thị hàm số y = $\sqrt{m^{2}+2x}-x$ có tiệm cận ngang.
Giải:
Bài 4: Hãy tìm đường tiệm cận ngang của đồ thị hàm số y = $\sqrt{x^{2}+2x+3}$
Giải:
$\lim_{x\rightarrow +\infty }\sqrt{x^{2}+2x+3}-x=\lim_{x\rightarrow +\infty }\frac{(\sqrt{x^{2}+2x+3})(\sqrt{x^{2}+2x+3}+x)}{\sqrt{x^{2}+2x+3}+2}$
$=\lim_{x\rightarrow +\infty }\frac{2x+3}{\sqrt{x^{2}+2x+3}+x}=1$
Kết luận: y = 1 là tiệm cận ngang của đồ thị hàm số.
Bài 5: Tìm giá trị m để hàm số sau có 2 tiệm cận đứng: y = $\frac{mx^{3}-2}{x^{2}-3x+2}$.
Giải:
Ta có $x^{2}-3x+2=0$
⇔ x = 2 hoặc x = 1
Khi hai đường thẳng x = 1 và x = 2 là đường tiệm cận của đồ thị hàm số thì x = 1 và x = 2 không phải là nghiệm của tử số $mx^{3}-2$
PAS VUIHOC – GIẢI PHÁP ÔN LUYỆN CÁ NHÂN HÓA
Khóa học online ĐẦU TIÊN VÀ DUY NHẤT:
⭐ Xây dựng lộ trình học từ mất gốc đến 27+
⭐ Chọn thầy cô, lớp, môn học theo sở thích
⭐ Tương tác trực tiếp hai chiều cùng thầy cô
⭐ Học đi học lại đến khi nào hiểu bài thì thôi
⭐ Rèn tips tricks giúp tăng tốc thời gian làm đề
⭐ Tặng full bộ tài liệu độc quyền trong quá trình học tập
Đăng ký học thử miễn phí ngay!!
Trên đây đã tổng hợp toàn bộ kiến thức và các dạng bài tập về dạng bài tiệm cận ngang: các khái niệm về tiệm cận ngang, công thức, ví dụ,... Mong rằng sau khi đọc bài viết, các em học sinh có thể hiểu rõ và áp dụng vào các dạng bài tập một cách dễ dàng. Truy cập Vuihoc.vn và đăng ký tài khoản để luyện tập ngay hôm nay nhé!
>> Xem thêm: